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Robust Asymmetric Loss for Multi-Label Long-Tailed Learning
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Overview
· We propose robust asymmetric loss, which is effective for long-tailed multi-label classification. 

· We improve the performance of long-tailed multi-label classification.

· We achieved Top-5 results in the CVAMD2023 competition on the long-tailed multi-label CXR-LT dataset. 
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Experimental results of the CXR-LT dataset.

Experimental results of the ICIS2018 and APTOS2019 datasets. Experimental result on the noisy conditions. Our RAL shows better performance compared to the others consistently.

CXR-LT ISIC2018 APTOS2019

RAL Loss (Ours) Our RAL is robust to the change of numerous hyperpara
meters due to the less sensitive negative loss in the training 
process. Our RAL loss regularizes the gradient of these ha
rd negative samples to make them less sensitive to hyper-p
arameters.

Effectiveness of each module in RAL Loss.

The details of long-tailed medical datasets.

Label distribution of the CXR-LT Dataset

· Escessively focuses on learning the head classes.

· Positive and negative losses share the same focusing parameter 𝜸𝜸.

· Optimizing such a large number of hyper-parameters can be a time-consuming process and often leads to overfitting the models.

Existing loss function Problem
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Result on CVAMD2023 Competition
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Experimental result of submissions of test phase of the CVAMD 2023 competition.

CXR-LT Dataset.

ISIC2018 Dataset.

APTOS2019  Dataset.

Model : ConvNeXT-Base
Optimizer : Adam
Loss : RAL (Ours)
Epoch :20

Image Size : 1024
Augmentation

- HorizontalFlip
- RandomRotation
- RandomErasing
- Sharpness
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